If

[tex]\[
\left[\begin{array}{ll}
3x + 2 & 0 \\
x + 4y & 2
\end{array}\right] = \left[\begin{array}{ll}
8 & 0 \\
2 & 2
\end{array}\right],
\][/tex]

find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].



Answer :

To solve for the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the given matrix equation:

[tex]\[ \begin{pmatrix} 3x + 2 & 0 \\ x + 4y & 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 2 & 2 \end{pmatrix}, \][/tex]

we need to set each corresponding element of the two matrices equal to each other. This will provide us with a system of equations to solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

### Step-by-Step Solution

1. Identify Corresponding Elements:

- From the top-left element: [tex]\( 3x + 2 = 8 \)[/tex]
- From the bottom-left element: [tex]\( x + 4y = 2 \)[/tex]
- The other corresponding elements provide [tex]\( 0 = 0 \)[/tex] and [tex]\( 2 = 2 \)[/tex], which are trivially true and do not provide additional information.

2. Solve the First Equation for [tex]\( x \)[/tex]:

Consider the equation [tex]\( 3x + 2 = 8 \)[/tex].

[tex]\[ 3x + 2 = 8 \][/tex]
Subtract 2 from both sides:

[tex]\[ 3x = 6 \][/tex]
Divide both sides by 3:

[tex]\[ x = 2 \][/tex]

3. Substitute [tex]\( x = 2 \)[/tex] into the Second Equation to Solve for [tex]\( y \)[/tex]:

Now use the second equation [tex]\( x + 4y = 2 \)[/tex] with [tex]\( x = 2 \)[/tex].

[tex]\[ 2 + 4y = 2 \][/tex]
Subtract 2 from both sides:

[tex]\[ 4y = 0 \][/tex]
Divide both sides by 4:

[tex]\[ y = 0 \][/tex]

### Summary

Thus, the values are:

[tex]\[ x = 2, \quad y = 0 \][/tex]

These values satisfy the given matrix equation.