Given [tex]$h(t)=-2(t+5)^2+4$[/tex], find [tex]$h(-8)$[/tex].

A. [tex]-334[/tex]
B. [tex]-14[/tex]
C. [tex]45[/tex]
D. [tex]445[/tex]



Answer :

To find the value of [tex]\( h(-8) \)[/tex] for the function [tex]\( h(t) = -2(t + 5)^2 + 4 \)[/tex]:

1. Substitute [tex]\( t = -8 \)[/tex] into the function:
[tex]\[ h(-8) = -2(-8 + 5)^2 + 4 \][/tex]

2. Simplify inside the parentheses first:
[tex]\[ -8 + 5 = -3 \][/tex]

3. Substitute [tex]\(-3\)[/tex] back into the expression:
[tex]\[ h(-8) = -2(-3)^2 + 4 \][/tex]

4. Square the [tex]\(-3\)[/tex]:
[tex]\[ (-3)^2 = 9 \][/tex]

5. Substitute [tex]\( 9 \)[/tex] back into the expression:
[tex]\[ h(-8) = -2 \cdot 9 + 4 \][/tex]

6. Multiply [tex]\(-2\)[/tex] by [tex]\( 9 \)[/tex]:
[tex]\[ -2 \cdot 9 = -18 \][/tex]

7. Add [tex]\( 4 \)[/tex] to [tex]\(-18\)[/tex]:
[tex]\[ -18 + 4 = -14 \][/tex]

Thus, the value of [tex]\( h(-8) \)[/tex] is [tex]\( -14 \)[/tex].

Therefore, the correct answer is:
[tex]\[ -14 \][/tex]