Which of the following is equal to the rational expression below when [tex]x \neq 4[/tex]?

[tex]\frac{x^2-16}{x-4}[/tex]

A. [tex]\frac{x+4}{x-4}[/tex]
B. [tex]x+4[/tex]
C. [tex]\frac{1}{x-4}[/tex]
D. [tex]x-4[/tex]



Answer :

To solve the given problem, we need to simplify the rational expression:

[tex]\[ \frac{x^2 - 16}{x - 4} \][/tex]

First, notice that the numerator [tex]\(x^2 - 16\)[/tex] can be factored. This is a difference of squares:

[tex]\[ x^2 - 16 = (x + 4)(x - 4) \][/tex]

So the original expression becomes:

[tex]\[ \frac{(x + 4)(x - 4)}{x - 4} \][/tex]

Since [tex]\(x \neq 4\)[/tex], we can safely cancel the common factor [tex]\(x - 4\)[/tex] in the numerator and denominator:

[tex]\[ \frac{(x + 4)(x - 4)}{x - 4} = x + 4 \][/tex]

Therefore, the simplified form of the given rational expression is [tex]\(x + 4\)[/tex].

So the correct answer is:

[tex]\[ \boxed{B} \][/tex]