Type the correct answer in the box.

A printer creates a right triangular card where the hypotenuse, [tex]\( h \)[/tex], is three times as long as the shorter leg. What is the length of the longer leg, [tex]\( f \)[/tex], in terms of [tex]\( h \)[/tex]? Write the answer in simplest form.

[tex]\[ I = a \sqrt{b} h \][/tex]

C



Answer :

To solve for the length of the longer leg [tex]\( f \)[/tex] in terms of the hypotenuse [tex]\( h \)[/tex] for a right triangle where the hypotenuse is three times the length of the shorter leg, we need to follow these steps:

1. Define variables:
- Let [tex]\( a \)[/tex] be the length of the shorter leg.
- Let [tex]\( h \)[/tex] be the hypotenuse.
- Since [tex]\( h \)[/tex] is given to be three times the length of the shorter leg, we have [tex]\( h = 3a \)[/tex].

2. Use the Pythagorean Theorem:
[tex]\[ a^2 + b^2 = h^2 \][/tex]
Here, [tex]\( b \)[/tex] is the longer leg we are solving for.

3. Substitute [tex]\( h = 3a \)[/tex] into the Pythagorean theorem:
[tex]\[ a^2 + b^2 = (3a)^2 \][/tex]
[tex]\[ a^2 + b^2 = 9a^2 \][/tex]

4. Solve for [tex]\( b^2 \)[/tex]:
[tex]\[ b^2 = 9a^2 - a^2 \][/tex]
[tex]\[ b^2 = 8a^2 \][/tex]

5. Taking the square root of both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \sqrt{8a^2} \][/tex]
[tex]\[ b = a\sqrt{8} \][/tex]
[tex]\[ b = 2a\sqrt{2} \][/tex]

6. Substitute [tex]\( a = \frac{h}{3} \)[/tex] to express [tex]\( b \)[/tex] in terms of [tex]\( h \)[/tex]:
[tex]\[ b = 2 \left( \frac{h}{3} \right) \sqrt{2} \][/tex]
[tex]\[ b = \frac{2h\sqrt{2}}{3} \][/tex]

Thus, the length of the longer leg [tex]\( f \)[/tex] in terms of the hypotenuse [tex]\( h \)[/tex] is [tex]\( \frac{2\sqrt{2}}{3}h \)[/tex].

So, the answer is:

[tex]\[ f = \frac{2\sqrt{2}}{3}h \][/tex]