For what value of [tex]x[/tex] is [tex]\sin(x) = \cos(32^{\circ})[/tex], where [tex]0^{\circ} \ \textless \ x \ \textless \ 90^{\circ}[/tex]?

A. [tex]64^{\circ}[/tex]

B. [tex]13^{\circ}[/tex]

C. [tex]58^{\circ}[/tex]

D. [tex]32^{\circ}[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] that satisfies [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] where [tex]\(0^\circ < x < 90^\circ\)[/tex], we can utilize trigonometric identities.

One of the fundamental trigonometric identities is that [tex]\(\sin(x) = \cos(90^\circ - x)\)[/tex].

Given this identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex] in a way that relates to [tex]\(\sin(x)\)[/tex]:
[tex]\[ \cos(32^\circ) = \sin(90^\circ - 32^\circ) \][/tex]

Therefore, we need:
[tex]\[ \sin(x) = \sin(90^\circ - 32^\circ) \][/tex]

From this equation, we can see that:
[tex]\[ x = 90^\circ - 32^\circ \][/tex]

Now, compute the value:
[tex]\[ x = 58^\circ \][/tex]

Thus, the value of [tex]\( x \)[/tex] that satisfies the given condition [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is [tex]\( \boxed{58^\circ} \)[/tex].