a) If [tex]$3 \vec{i}+\vec{j}-\vec{k}$[/tex] and [tex]$\lambda \vec{i}-4 \vec{j}+4 \vec{k}$[/tex] are collinear vectors, find the value of [tex]\lambda[/tex].



Answer :

To determine the value of [tex]\(\lambda\)[/tex] for which the vectors [tex]\(\vec{a} = 3\vec{i} + \vec{j} - \vec{k}\)[/tex] and [tex]\(\vec{b} = \lambda \vec{i} - 4 \vec{j} + 4 \vec{k}\)[/tex] are collinear, we need to satisfy the property of proportionality between the corresponding components of the vectors.

For vectors [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] to be collinear, there must exist a scalar [tex]\(k\)[/tex] such that each component of [tex]\(\vec{a}\)[/tex] is proportional to the corresponding component of [tex]\(\vec{b}\)[/tex]:

[tex]\[ \frac{3}{\lambda} = \frac{1}{-4} = \frac{-1}{4} \][/tex]

From the equations [tex]\(\frac{3}{\lambda} = \frac{1}{-4}\)[/tex] and [tex]\(\frac{3}{\lambda} = \frac{-1}{4}\)[/tex], we solve for [tex]\(\lambda\)[/tex]:

Step 1: Solve the first proportion:

[tex]\[ \frac{3}{\lambda} = \frac{1}{-4} \][/tex]

Cross-multiplying gives:

[tex]\[ 3 \cdot (-4) = \lambda \cdot 1 \quad \Rightarrow \quad -12 = \lambda \][/tex]

Step 2: Check the second proportion:

[tex]\[ \frac{3}{\lambda} = \frac{-1}{4} \][/tex]

Cross-multiplying gives the same result:

[tex]\[ 3 \cdot 4 = \lambda \cdot (-1) \quad \Rightarrow \quad 12 = -\lambda \quad \Rightarrow \quad \lambda = -12 \][/tex]

Having confirmed the consistency, we conclude that the value of [tex]\(\lambda\)[/tex] is:

[tex]\[ \lambda = -12 \][/tex]