1) What is the greatest common factor of [tex]$9 x^2$[/tex] and [tex]$6 x$[/tex]?

Choose 1 answer:
(A) [tex][tex]$3 x$[/tex][/tex]
(B) [tex]$3 x^2$[/tex]
(C) [tex]$18 x$[/tex]
(D) [tex][tex]$18 x^2$[/tex][/tex]
(E) [tex]$54 x^2$[/tex]



Answer :

To determine the greatest common factor (GCF) of the expressions [tex]\( 9x^2 \)[/tex] and [tex]\( 6x \)[/tex], we can follow these steps:

1. Factor each term:
- For [tex]\( 9x^2 \)[/tex]:
[tex]\[ 9x^2 = 3^2 \cdot x^2 \][/tex]
- For [tex]\( 6x \)[/tex]:
[tex]\[ 6x = 2 \cdot 3 \cdot x \][/tex]

2. Identify the common factors:
- Both [tex]\( 9x^2 \)[/tex] and [tex]\( 6x \)[/tex] have the common factor [tex]\( 3 \)[/tex] and [tex]\( x \)[/tex].

3. Combine the common factors:
- Since both terms share the factor [tex]\( 3 \)[/tex] and [tex]\( x \)[/tex], their greatest common factor is the product of these common factors:
[tex]\[ 3 \cdot x = 3x \][/tex]

Therefore, the greatest common factor of [tex]\( 9x^2 \)[/tex] and [tex]\( 6x \)[/tex] is [tex]\( 3x \)[/tex].

So, the correct answer is:
(A) [tex]\( 3x \)[/tex]