4uck
Answered

Use the number line below, where [tex]RS = 8y + 2[/tex], [tex]ST = 4y + 8[/tex], and [tex]RT = 70[/tex].

a. What is the value of [tex]y[/tex]?

b. Find [tex]RS[/tex] and [tex]ST[/tex].

a. What is the value of [tex]y[/tex]?
[tex]y = \square[/tex] (Type an integer or a decimal.)



Answer :

Let's tackle the problem step-by-step.

### Given:
1. [tex]\( RS = 8y + 2 \)[/tex]
2. [tex]\( ST = 4y + 8 \)[/tex]
3. [tex]\( RT = 70 \)[/tex]

### Part a: What is the value of [tex]\( y \)[/tex]?

Since [tex]\( R \)[/tex], [tex]\( S \)[/tex], and [tex]\( T \)[/tex] are collinear points on a number line, we can write:
[tex]\[ RS + ST = RT \][/tex]

Substitute the given expressions for [tex]\( RS \)[/tex] and [tex]\( ST \)[/tex] into this equation:
[tex]\[ (8y + 2) + (4y + 8) = 70 \][/tex]

Combine like terms:
[tex]\[ 12y + 10 = 70 \][/tex]

To isolate [tex]\( y \)[/tex], first subtract 10 from both sides:
[tex]\[ 12y = 60 \][/tex]

Next, divide both sides by 12:
[tex]\[ y = 5 \][/tex]

### Part b: Find [tex]\( RS \)[/tex] and [tex]\( ST \)[/tex]

Now that we know [tex]\( y = 5 \)[/tex], substitute this value back into the expressions for [tex]\( RS \)[/tex] and [tex]\( ST \)[/tex]:

1. For [tex]\( RS \)[/tex]:
[tex]\[ RS = 8y + 2 \][/tex]
[tex]\[ RS = 8(5) + 2 \][/tex]
[tex]\[ RS = 40 + 2 \][/tex]
[tex]\[ RS = 42 \][/tex]

2. For [tex]\( ST \)[/tex]:
[tex]\[ ST = 4y + 8 \][/tex]
[tex]\[ ST = 4(5) + 8 \][/tex]
[tex]\[ ST = 20 + 8 \][/tex]
[tex]\[ ST = 28 \][/tex]

### Summary:

a. The value of [tex]\( y \)[/tex] is:
[tex]\[ y = 5 \][/tex]

b. The values of [tex]\( RS \)[/tex] and [tex]\( ST \)[/tex] are:
[tex]\[ RS = 42 \][/tex]
[tex]\[ ST = 28 \][/tex]

Therefore, the value of [tex]\( y \)[/tex] is 5.