Given the matrix equation:

[tex]\[
\left[\begin{array}{c}
2a + b - 1 \\
4 - b
\end{array}\right]
=
\left[\begin{array}{c}
1 \\
3
\end{array}\right]
\][/tex]

Find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].



Answer :

Let's solve the given system of equations step-by-step to find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

We are given the equations in matrix form:
[tex]\[ \left[\begin{array}{c} 2ab - 1 \\ 4 - b \end{array}\right] = \left[\begin{array}{c} 1 \\ 3 \end{array}\right] \][/tex]

This can be written as two separate equations:
1. [tex]\(2ab - 1 = 1\)[/tex]
2. [tex]\(4 - b = 3\)[/tex]

### Step 1: Solve the second equation for [tex]\(b\)[/tex]
The second equation is:
[tex]\[ 4 - b = 3 \][/tex]

To solve for [tex]\(b\)[/tex], isolate [tex]\(b\)[/tex]:
[tex]\[ 4 - b = 3 \\ 4 - 3 = b \\ b = 1 \][/tex]

Now that we have found [tex]\(b = 1\)[/tex], we can substitute this value into the first equation.

### Step 2: Substitute [tex]\(b = 1\)[/tex] into the first equation and solve for [tex]\(a\)[/tex]
The first equation is:
[tex]\[ 2ab - 1 = 1 \][/tex]

Substitute [tex]\(b = 1\)[/tex]:
[tex]\[ 2a(1) - 1 = 1 \\ 2a - 1 = 1 \][/tex]

Next, isolate [tex]\(a\)[/tex]:
[tex]\[ 2a - 1 = 1 \\ 2a = 1 + 1 \\ 2a = 2 \\ a = \frac{2}{2} \\ a = 1 \][/tex]

### Final Result
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the system of equations are:
[tex]\[ a = 1, \quad b = 1 \][/tex]