Answer :
To evaluate the expression [tex]\((-2 + 1)^2 + 5 \left( \frac{12}{3} \right) - 9\)[/tex] step-by-step, we will follow the order of operations (Parentheses, Exponents, Multiplication and Division from left to right, Addition and Subtraction from left to right), often abbreviated as PEMDAS.
1. Parentheses:
Begin by evaluating the expression inside the innermost parentheses:
[tex]\[ -2 + 1 = -1 \][/tex]
So, the expression now becomes:
[tex]\[ (-1)^2 + 5 \left( \frac{12}{3} \right) - 9 \][/tex]
2. Exponents:
Next, calculate the exponent:
[tex]\[ (-1)^2 = 1 \][/tex]
So, the expression now is:
[tex]\[ 1 + 5 \left( \frac{12}{3} \right) - 9 \][/tex]
3. Division:
Now, perform the division:
[tex]\[ \frac{12}{3} = 4 \][/tex]
So, the expression simplifies to:
[tex]\[ 1 + 5 \cdot 4 - 9 \][/tex]
4. Multiplication:
Then, carry out the multiplication:
[tex]\[ 5 \cdot 4 = 20 \][/tex]
So the expression becomes:
[tex]\[ 1 + 20 - 9 \][/tex]
5. Addition and Subtraction:
Finally, perform the addition and subtraction from left to right:
[tex]\[ 1 + 20 = 21 \][/tex]
[tex]\[ 21 - 9 = 12 \][/tex]
Therefore, the value of the expression is [tex]\( 12 \)[/tex].
1. Parentheses:
Begin by evaluating the expression inside the innermost parentheses:
[tex]\[ -2 + 1 = -1 \][/tex]
So, the expression now becomes:
[tex]\[ (-1)^2 + 5 \left( \frac{12}{3} \right) - 9 \][/tex]
2. Exponents:
Next, calculate the exponent:
[tex]\[ (-1)^2 = 1 \][/tex]
So, the expression now is:
[tex]\[ 1 + 5 \left( \frac{12}{3} \right) - 9 \][/tex]
3. Division:
Now, perform the division:
[tex]\[ \frac{12}{3} = 4 \][/tex]
So, the expression simplifies to:
[tex]\[ 1 + 5 \cdot 4 - 9 \][/tex]
4. Multiplication:
Then, carry out the multiplication:
[tex]\[ 5 \cdot 4 = 20 \][/tex]
So the expression becomes:
[tex]\[ 1 + 20 - 9 \][/tex]
5. Addition and Subtraction:
Finally, perform the addition and subtraction from left to right:
[tex]\[ 1 + 20 = 21 \][/tex]
[tex]\[ 21 - 9 = 12 \][/tex]
Therefore, the value of the expression is [tex]\( 12 \)[/tex].