Sara wants to find the input value that produces the same output for the functions represented by the tables.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{[tex]$f(x) = -5x + 2$[/tex]} \\
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -3 & 17 \\
\hline -2 & 12 \\
\hline -1 & 7 \\
\hline 0 & 2 \\
\hline 1 & -3 \\
\hline 2 & -8 \\
\hline 3 & -13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{[tex]$g(x) = 2x - 3$[/tex]} \\
\hline [tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline -3 & -9 \\
\hline -2 & -7 \\
\hline -1 & -5 \\
\hline 0 & -3 \\
\hline 1 & -1 \\
\hline 2 & 1 \\
\hline 3 & 3 \\
\hline
\end{tabular}

What is the input value that produces the same output value in both charts?

A. -2

B. -1

C. 1

D. 2



Answer :

To determine which input value produces the same output for the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], we need to compare their values at specific points. The problem provides the function definitions [tex]\( f(x) = -5x + 2 \)[/tex] and [tex]\( g(x) = 2x - 3 \)[/tex], and asks us to check the input values [tex]\(-2, -1, 1, \)[/tex] and [tex]\(2\)[/tex].

Let's evaluate [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at each of these points and see if any results match:

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -5(-2) + 2 = 10 + 2 = 12 \][/tex]
[tex]\[ g(-2) = 2(-2) - 3 = -4 - 3 = -7 \][/tex]
The values don't match, so [tex]\(-2\)[/tex] is not a solution.

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -5(-1) + 2 = 5 + 2 = 7 \][/tex]
[tex]\[ g(-1) = 2(-1) - 3 = -2 - 3 = -5 \][/tex]
The values don't match, so [tex]\(-1\)[/tex] is not a solution.

3. For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -5(1) + 2 = -5 + 2 = -3 \][/tex]
[tex]\[ g(1) = 2(1) - 3 = 2 - 3 = -1 \][/tex]
The values don't match, so 1 is not a solution.

4. For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -5(2) + 2 = -10 + 2 = -8 \][/tex]
[tex]\[ g(2) = 2(2) - 3 = 4 - 3 = 1 \][/tex]
The values don't match, so 2 is not a solution.

After checking all provided values, we see that none of the input values [tex]\(-2, -1, 1,\)[/tex] or [tex]\(2\)[/tex] produce the same output for both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]. Therefore, the correct conclusion is that there is no such input value among those given that makes both functions produce the same output.