Describe the steps you would take to solve the given literal equation for [tex]m[/tex] as shown.

[tex]\[
\begin{array}{l}
t = 2 \pi \sqrt{\frac{m}{k}} \\
m = \frac{k t^2}{4 \pi^2}
\end{array}
\][/tex]



Answer :

Sure! Let's solve the given literal equation [tex]\( t = 2 \pi \sqrt{\frac{m}{k}} \)[/tex] for [tex]\( m \)[/tex] step-by-step.

1. Starting with the given equation:
[tex]\[ t = 2 \pi \sqrt{\frac{m}{k}} \][/tex]

2. Isolate the square root term:
To do this, we first divide both sides of the equation by [tex]\( 2\pi \)[/tex]:
[tex]\[ \frac{t}{2\pi} = \sqrt{\frac{m}{k}} \][/tex]

3. Clear the square root:
Square both sides of the equation to eliminate the square root:
[tex]\[ \left( \frac{t}{2\pi} \right)^2 = \left(\sqrt{\frac{m}{k}}\right)^2 \][/tex]
[tex]\[ \left(\frac{t}{2\pi}\right)^2 = \frac{m}{k} \][/tex]

4. Simplify the left side:
[tex]\[ \frac{t^2}{(2\pi)^2} = \frac{m}{k} \][/tex]

5. Multiply through by [tex]\( k \)[/tex] to solve for [tex]\( m \)[/tex]:
[tex]\[ m = k \cdot \frac{t^2}{(2\pi)^2} \][/tex]

6. Simplify the denominator:
[tex]\[ m = k \cdot \frac{t^2}{4\pi^2} \][/tex]

So, the solution to the equation [tex]\( t = 2 \pi \sqrt{\frac{m}{k}} \)[/tex] for [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]