Rewrite in simplest radical form 1 over the quantity x to the -3/6 quantity. Show each step of your process. Please show the work for this



Answer :

Answer:

√x

Step-by-step explanation:

[tex] \frac{1}{ {x}^{ - \frac{3}{6} } } [/tex]

Apply negative fraction power law of indices

[tex] = \frac{1}{ \frac{1}{ {x}^{ \frac{3}{6} } } } [/tex]

[tex] = 1 \times \frac{ {x}^{ \frac{3}{6} } }{1} [/tex]

[tex] = {x}^{ \frac{3}{6} } [/tex]

[tex] = {x}^{ \frac{1}{2} } [/tex]

= √x

Answer:

[tex]\sqrt{x}[/tex]

Step-by-step explanation:

Given expression:

[tex]\dfrac{1}{x^{-\frac36}}[/tex]

To rewrite the given expression in its simplest radical form, begin by simplifying the exponent of the term in the denominator:

[tex]-\dfrac{3}{6}=-\dfrac{3\div 3}{6\div 3}=-\dfrac{1}{2}[/tex]

Therefore:

[tex]\dfrac{1}{x^{-\frac36}}=\dfrac{1}{x^{-\frac12}}[/tex]

Now, apply the Negative Exponent Rule to the term in the denominator.

[tex]\boxed{\begin{array}{c}\underline{\textsf{Negative Exponent Rule}}\\\\a^{-m}=\dfrac{1}{a^m}\end{array}}[/tex]

Therefore:

[tex]\dfrac{1}{x^{-\frac12}}=\dfrac{1}{\left(\dfrac{1}{x^{\frac12}}\right)}[/tex]

Taking the reciprocal of 1/n results in n, so:

[tex]\dfrac{1}{\left(\dfrac{1}{x^{\frac12}}\right)}=x^{\frac12}[/tex]

When a number is raised to 1/2, it means taking the square root of that number. So, the given expression rewritten in its simplest radical form is:

[tex]\LARGE\boxed{\boxed{\sqrt{x}}}[/tex]