Solve:
[tex]\[ \frac{5}{6} + \frac{4}{6} \][/tex]

A. [tex]\(1 \frac{3}{6}\)[/tex]
B. [tex]\(1 \frac{2}{6}\)[/tex]
C. [tex]\(\frac{9}{12}\)[/tex]
D. [tex]\(\frac{1}{6}\)[/tex]



Answer :

To solve the problem of adding the fractions [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{4}{6}\)[/tex], let's follow a step-by-step approach:

1. Understand the Problem:
We need to add two fractions:
[tex]\[ \frac{5}{6} + \frac{4}{6} \][/tex]

2. Add the Numerators:
Since the denominators are the same, we keep the denominator (6) and add the numerators (5 and 4):
[tex]\[ \frac{5+4}{6} = \frac{9}{6} \][/tex]

3. Simplify the Sum:
Simplify [tex]\(\frac{9}{6}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor (GCD), which is 3:
[tex]\[ \frac{9 \div 3}{6 \div 3} = \frac{3}{2} \][/tex]

4. Convert to a Mixed Number (if needed):
We can convert [tex]\(\frac{3}{2}\)[/tex] to a mixed number by dividing the numerator by the denominator:
[tex]\[ 3 \div 2 = 1 \quad \text{remainder: } 1 \][/tex]
This gives us:
[tex]\[ 1 \frac{1}{2} \][/tex]

The result of [tex]\(\frac{5}{6} + \frac{4}{6}\)[/tex] is therefore:
[tex]\[ 1 \frac{1}{2} \][/tex]

Now let's compare this with the given options:

1. [tex]\(1 \frac{3}{6}\)[/tex]
2. [tex]\(1 \frac{2}{6}\)[/tex]
3. [tex]\(\frac{9}{12}\)[/tex]
4. [tex]\(\frac{1}{6}\)[/tex]

- [tex]\(1 \frac{3}{6}\)[/tex] simplifies to [tex]\(1 \frac{1}{2}\)[/tex], which matches our result.
- [tex]\(1 \frac{2}{6}\)[/tex] simplifies to [tex]\(1 \frac{1}{3}\)[/tex], which does not match.
- [tex]\(\frac{9}{12}\)[/tex] simplifies to [tex]\(\frac{3}{4}\)[/tex], which does not match.
- [tex]\(\frac{1}{6}\)[/tex] is clearly not a match.

Hence, the correct answer is:
[tex]\[ 1 \frac{3}{6} \][/tex]

Other Questions