Select the correct answer.

What is the value of this expression when [tex]a=2[/tex] and [tex]b=-3[/tex]?

[tex]\frac{a^2 - b^2}{\delta}[/tex]

A. [tex]-3 \frac{4}{6}[/tex]
B. [tex]\div \frac{9}{5}[/tex]
C. 3
D. 7



Answer :

Let's break down the problem step-by-step:

Step 1: Calculate [tex]\( a^2 - b^2 \)[/tex]

Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = -3 \)[/tex]

First, calculate [tex]\( a^2 \)[/tex] and [tex]\( b^2 \)[/tex]:

[tex]\[ a^2 = 2^2 = 4 \][/tex]
[tex]\[ b^2 = (-3)^2 = 9 \][/tex]

Now, find [tex]\( a^2 - b^2 \)[/tex]:

[tex]\[ a^2 - b^2 = 4 - 9 = -5 \][/tex]

Step 2: Consider the divisor [tex]\(\delta \)[/tex]

Assume [tex]\(\delta = 1\)[/tex]:

[tex]\[ \frac{a^2 - b^2}{\delta} = \frac{-5}{1} = -5 \][/tex]

Step 3: Incorporate the mixed number [tex]\(-3 \frac{4}{6}\)[/tex]

Convert the mixed number into an improper fraction and make calculations:

[tex]\[ -3 \frac{4}{6} = -3 + \frac{4}{6} \][/tex]
[tex]\[ -3 \frac{4}{6} = -3 + \frac{2}{3} \][/tex]

Convert [tex]\(\frac{4}{6}\)[/tex] into a decimal:

[tex]\[ \frac{4}{6} = 0.66667 \][/tex]

So:

[tex]\[ -3 + 0.66667 = -2.33333 \][/tex]

Step 4: Solve the division by [tex]\( \frac{9}{5} \)[/tex]

Given the expression:

[tex]\[ -2.33333 \div \frac{9}{5} \][/tex]

This is equivalent to:

[tex]\[ -2.33333 \times \frac{5}{9} \][/tex]

Let's multiply:

[tex]\[ -2.33333 \times \frac{5}{9} = -1.2963 \][/tex]

Therefore, the value of the entire expression is:

[tex]\[ \boxed{-1.2963} \][/tex]