Which ordered pairs are in the solution set of the system of linear inequalities?

[tex]\[
\begin{array}{l}
y \geq -\frac{1}{3}x + 2 \\
y \ \textless \ 2x + 3
\end{array}
\][/tex]

A. [tex]\((2,2), (3,1), (4,2)\)[/tex]

B. [tex]\((2,2), (3,-1), (4,1)\)[/tex]



Answer :

Let's determine which of the given ordered pairs satisfy the system of linear inequalities:

[tex]\[ \begin{cases} y \geq -\frac{1}{3} x + 2 \\ y < 2x + 3 \end{cases} \][/tex]

We will check each pair against the inequalities.

### Evaluating the Pairs from the First List [tex]\((2,2), (3,1), (4,2)\)[/tex]:

1. Pair [tex]\((2, 2)\)[/tex]:
- For the first inequality [tex]\( y \geq -\frac{1}{3} x + 2 \)[/tex]:
[tex]\[ 2 \geq -\frac{1}{3}(2) + 2 \implies 2 \geq -\frac{2}{3} + 2 \implies 2 \geq \frac{4}{3} \][/tex]
This is true.
- For the second inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 2 < 2(2) + 3 \implies 2 < 4 + 3 \implies 2 < 7 \][/tex]
This is also true.

Thus, [tex]\((2, 2)\)[/tex] satisfies both inequalities.

2. Pair [tex]\((3, 1)\)[/tex]:
- For the first inequality [tex]\( y \geq -\frac{1}{3} x + 2 \)[/tex]:
[tex]\[ 1 \geq -\frac{1}{3}(3) + 2 \implies 1 \geq -1 + 2 \implies 1 \geq 1 \][/tex]
This is true.
- For the second inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 1 < 2(3) + 3 \implies 1 < 6 + 3 \implies 1 < 9 \][/tex]
This is also true.

Thus, [tex]\((3, 1)\)[/tex] satisfies both inequalities.

3. Pair [tex]\((4, 2)\)[/tex]:
- For the first inequality [tex]\( y \geq -\frac{1}{3} x + 2 \)[/tex]:
[tex]\[ 2 \geq -\frac{1}{3}(4) + 2 \implies 2 \geq -\frac{4}{3} + 2 \implies 2 \geq \frac{2}{3} \][/tex]
This is true.
- For the second inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 2 < 2(4) + 3 \implies 2 < 8 + 3 \implies 2 < 11 \][/tex]
This is also true.

Thus, [tex]\((4, 2)\)[/tex] satisfies both inequalities.

So, the solution set from the first list [tex]\((2, 2), (3, 1), (4, 2)\)[/tex] includes all three pairs.

### Evaluating the Pairs from the Second List [tex]\((2,2), (3,-1), (4,1)\)[/tex]:

1. Pair [tex]\((2, 2)\)[/tex]:
- This pair was previously evaluated and found to satisfy both inequalities.

2. Pair [tex]\((3, -1)\)[/tex]:
- For the first inequality [tex]\( y \geq -\frac{1}{3} x + 2 \)[/tex]:
[tex]\[ -1 \geq -\frac{1}{3}(3) + 2 \implies -1 \geq -1 + 2 \implies -1 \geq 1 \][/tex]
This is false.

Thus, [tex]\((3, -1)\)[/tex] does not satisfy the system of inequalities.

3. Pair [tex]\((4, 1)\)[/tex]:
- For the first inequality [tex]\( y \geq -\frac{1}{3} x + 2 \)[/tex]:
[tex]\[ 1 \geq -\frac{1}{3}(4) + 2 \implies 1 \geq -\frac{4}{3} + 2 \implies 1 \geq \frac{2}{3} \][/tex]
This is true.
- For the second inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 1 < 2(4) + 3 \implies 1 < 8 + 3 \implies 1 < 11 \][/tex]
This is also true.

Thus, [tex]\((4, 1)\)[/tex] satisfies both inequalities.

So, the solution set from the second list [tex]\((2, 2), (3, -1), (4, 1)\)[/tex] includes the pairs [tex]\((2, 2)\)[/tex] and [tex]\((4, 1)\)[/tex].

### Conclusion

The pairs in the solution sets of the two supplied lists are:

1. From the first list [tex]\((2, 2), (3, 1), (4, 2)\)[/tex], the pairs that satisfy the system are:
[tex]\[ \{(2, 2), (3, 1), (4, 2)\} \][/tex]

2. From the second list [tex]\((2, 2), (3, -1), (4, 1)\)[/tex], the pairs that satisfy the system are:
[tex]\[ \{(2, 2), (4, 1)\} \][/tex]