Sure, let's solve the inequality step by step:
Given the inequality:
[tex]\[ 2x + 3 \leq x - 5 \][/tex]
1. Isolate the terms involving [tex]\( x \)[/tex]:
Subtract [tex]\( x \)[/tex] from both sides to combine like terms:
[tex]\[ 2x + 3 - x \leq x - 5 - x \][/tex]
This simplifies to:
[tex]\[ x + 3 \leq -5 \][/tex]
2. Isolate [tex]\( x \)[/tex]:
Subtract 3 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x + 3 - 3 \leq -5 - 3 \][/tex]
This simplifies to:
[tex]\[ x \leq -8 \][/tex]
So, the solution to the inequality [tex]\( 2x + 3 \leq x - 5 \)[/tex] is:
[tex]\[ x \leq -8 \][/tex]
Therefore, among the given options, the correct answer is:
[tex]\[ x \leq -8 \][/tex]