Solve for [tex]$x$[/tex].

[tex]\[ 2x + 3 \leq x - 5 \][/tex]

A. [tex]$x \leq -2$[/tex]
B. [tex]$x \leq 2$[/tex]
C. [tex][tex]$x \leq 8$[/tex][/tex]
D. [tex]$x \leq -8$[/tex]



Answer :

Sure, let's solve the inequality step by step:

Given the inequality:
[tex]\[ 2x + 3 \leq x - 5 \][/tex]

1. Isolate the terms involving [tex]\( x \)[/tex]:
Subtract [tex]\( x \)[/tex] from both sides to combine like terms:
[tex]\[ 2x + 3 - x \leq x - 5 - x \][/tex]
This simplifies to:
[tex]\[ x + 3 \leq -5 \][/tex]

2. Isolate [tex]\( x \)[/tex]:
Subtract 3 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x + 3 - 3 \leq -5 - 3 \][/tex]
This simplifies to:
[tex]\[ x \leq -8 \][/tex]

So, the solution to the inequality [tex]\( 2x + 3 \leq x - 5 \)[/tex] is:
[tex]\[ x \leq -8 \][/tex]

Therefore, among the given options, the correct answer is:
[tex]\[ x \leq -8 \][/tex]