Answer :
To understand what [tex]\( C(76.1) \)[/tex] represents, you need to utilize the function provided:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
This function is specifically designed to convert a temperature in degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]). In this case, we want to find out the value of [tex]\( C(76.1) \)[/tex].
1. Identify what [tex]\( F \)[/tex] is: Here, [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.
2. Substitute [tex]\( F \)[/tex] into the function: The function becomes:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the expression inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
Following this step-by-step process, we obtain the value:
[tex]\[ C(76.1) \approx 24.5 \][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] calculates to approximately 24.5 when [tex]\( F = 76.1 \)[/tex].
Now, to interpret this:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius is approximately 24.5 degrees Celsius.
Looking at the given options:
1. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
2. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
3. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
4. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit
Option 1 correctly describes the situation. Therefore, the answer is:
The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
This function is specifically designed to convert a temperature in degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]). In this case, we want to find out the value of [tex]\( C(76.1) \)[/tex].
1. Identify what [tex]\( F \)[/tex] is: Here, [tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.
2. Substitute [tex]\( F \)[/tex] into the function: The function becomes:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the expression inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
Following this step-by-step process, we obtain the value:
[tex]\[ C(76.1) \approx 24.5 \][/tex]
Therefore, [tex]\( C(76.1) \)[/tex] calculates to approximately 24.5 when [tex]\( F = 76.1 \)[/tex].
Now, to interpret this:
- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius is approximately 24.5 degrees Celsius.
Looking at the given options:
1. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
2. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
3. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
4. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit
Option 1 correctly describes the situation. Therefore, the answer is:
The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.