Which of the following is the rational exponent expression of [tex]$\sqrt[4]{f}$[/tex]?

A. [tex]f^{\frac{1}{4}}[/tex]
B. [tex]p^4[/tex]
C. [tex]4 f[/tex]
D. [tex]\frac{f}{4}[/tex]



Answer :

To determine the rational exponent expression of the fourth root of [tex]\( f \)[/tex], we start by rewriting the expression [tex]\(\sqrt[4]{f}\)[/tex] in terms of exponents.

The notation [tex]\(\sqrt[4]{f}\)[/tex] represents the fourth root of [tex]\(f\)[/tex], and a general property of exponents is that the [tex]\(n\)[/tex]-th root of a number [tex]\(a\)[/tex] can be expressed as [tex]\( a^{\frac{1}{n}} \)[/tex].

In this case:

[tex]\[ \sqrt[4]{f} = f^{\frac{1}{4}} \][/tex]

Thus, the rational exponent expression of the fourth root of [tex]\( f \)[/tex] is:

[tex]\[ f^{\frac{1}{4}} \][/tex]

So, the correct choice is [tex]\( f^{\frac{1}{4}} \)[/tex].