If [tex]$g(x)=\frac{x+1}{x-2}$[/tex] and [tex]$h(x)=4-x$[/tex], what is the value of [tex]$(g \circ h)(-3)$[/tex]?

A. [tex][tex]$\frac{8}{5}$[/tex][/tex]
B. [tex]$\frac{5}{2}$[/tex]
C. [tex]$\frac{15}{2}$[/tex]
D. [tex][tex]$\frac{18}{5}$[/tex][/tex]



Answer :

To find the value of [tex]\((g \circ h)(-3)\)[/tex], we need to evaluate the functions step by step.

First, let's understand the meaning of [tex]\((g \circ h)(x)\)[/tex]. This notation represents the composition of the functions [tex]\(g(x)\)[/tex] and [tex]\(h(x)\)[/tex], where [tex]\(g(h(x))\)[/tex] is to be evaluated. In this case, we will first evaluate [tex]\(h(x)\)[/tex] at [tex]\(-3\)[/tex], and then use this result as the input to the function [tex]\(g(x)\)[/tex].

Given the functions:
[tex]\[ g(x) = \frac{x+1}{x-2} \][/tex]
[tex]\[ h(x) = 4 - x \][/tex]

1. Evaluate [tex]\(h(-3)\)[/tex]:
[tex]\[ h(-3) = 4 - (-3) = 4 + 3 = 7 \][/tex]

2. Evaluate [tex]\(g\)[/tex] at the result of [tex]\(h(-3)\)[/tex], which is [tex]\(7\)[/tex]:
[tex]\[ g(7) = \frac{7+1}{7-2} = \frac{8}{5} \][/tex]

Thus, the value of [tex]\((g \circ h)(-3)\)[/tex] is:
[tex]\[ \frac{8}{5} \][/tex]

Therefore, the correct choice from the given options is:
[tex]\[ \boxed{\frac{8}{5}} \][/tex]