Solve [tex]$13n - 6p - 11n = 2p$[/tex] for [tex]$n$[/tex].

A. [tex]$n = -\frac{p}{2}$[/tex]
B. [tex][tex]$n = \frac{p}{4}$[/tex][/tex]
C. [tex]$n = -2p$[/tex]
D. [tex]$n = 4p$[/tex]



Answer :

To solve the equation [tex]\(13n - 6p - 11n = 2p\)[/tex] for [tex]\(n\)[/tex], follow these steps:

1. Simplify the equation by combining like terms on the left-hand side:
[tex]\[ 13n - 11n - 6p = 2p \][/tex]
This reduces to:
[tex]\[ 2n - 6p = 2p \][/tex]

2. Isolate the [tex]\(n\)[/tex] term by moving all terms involving [tex]\(p\)[/tex] to the right-hand side:
[tex]\[ 2n = 2p + 6p \][/tex]
Simplify the right-hand side:
[tex]\[ 2n = 8p \][/tex]

3. Solve for [tex]\(n\)[/tex] by dividing both sides of the equation by 2:
[tex]\[ n = \frac{8p}{2} \][/tex]
This simplifies to:
[tex]\[ n = 4p \][/tex]

Therefore, the solution for [tex]\(n\)[/tex] is:
[tex]\[ \boxed{n = 4p} \][/tex]

Thus, the correct answer is [tex]\(D\)[/tex].