Answer :
Let's simplify the expression [tex]\((1+3)^2-10 \div 2\)[/tex] step by step.
1. Step 1: Simplify inside the parentheses
First, we simplify the expression inside the parentheses:
[tex]\[ 1 + 3 = 4 \][/tex]
So, the expression now looks like this:
[tex]\[ (4)^2 - 10 \div 2 \][/tex]
2. Step 2: Apply the exponent
Next, we apply the exponent to the value obtained inside the parentheses:
[tex]\[ 4^2 = 16 \][/tex]
Now, the expression is:
[tex]\[ 16 - 10 \div 2 \][/tex]
3. Step 3: Perform the division
We then perform the division operation:
[tex]\[ 10 \div 2 = 5 \][/tex]
The expression now becomes:
[tex]\[ 16 - 5 \][/tex]
4. Step 4: Subtract the division result from the exponent result
Finally, we perform the subtraction:
[tex]\[ 16 - 5 = 11 \][/tex]
So, the simplified result of the expression [tex]\((1+3)^2-10 \div 2\)[/tex] is:
[tex]\[ 11 \][/tex]
1. Step 1: Simplify inside the parentheses
First, we simplify the expression inside the parentheses:
[tex]\[ 1 + 3 = 4 \][/tex]
So, the expression now looks like this:
[tex]\[ (4)^2 - 10 \div 2 \][/tex]
2. Step 2: Apply the exponent
Next, we apply the exponent to the value obtained inside the parentheses:
[tex]\[ 4^2 = 16 \][/tex]
Now, the expression is:
[tex]\[ 16 - 10 \div 2 \][/tex]
3. Step 3: Perform the division
We then perform the division operation:
[tex]\[ 10 \div 2 = 5 \][/tex]
The expression now becomes:
[tex]\[ 16 - 5 \][/tex]
4. Step 4: Subtract the division result from the exponent result
Finally, we perform the subtraction:
[tex]\[ 16 - 5 = 11 \][/tex]
So, the simplified result of the expression [tex]\((1+3)^2-10 \div 2\)[/tex] is:
[tex]\[ 11 \][/tex]