Consider the equation [tex]\frac{5}{3} v+4+\frac{1}{3} v=8[/tex]. What is the resulting equation after the first step in the solution?

A. [tex]\frac{5}{3} v+4=8-\frac{1}{3} v[/tex]
B. [tex]\frac{4}{3} v+4=8[/tex]
C. [tex]4+v=8-\frac{5}{3} v[/tex]
D. [tex]2 v+4=8[/tex]



Answer :

To solve the given equation, [tex]\(\frac{5}{3} v + 4 + \frac{1}{3} v = 8\)[/tex], let's break it down step-by-step.

1. Combine Like Terms: We first look at the terms involving [tex]\(v\)[/tex]. We have [tex]\(\frac{5}{3} v\)[/tex] and [tex]\(\frac{1}{3} v\)[/tex]. These are like terms and can be combined.
- Adding [tex]\(\frac{5}{3} v\)[/tex] and [tex]\(\frac{1}{3} v\)[/tex] gives us:
[tex]\[ \frac{5}{3} v + \frac{1}{3} v = \left(\frac{5+1}{3}\right) v = \frac{6}{3} v = 2v \][/tex]

2. Substitute Combined Terms back into the Equation: The equation now simplifies to:
[tex]\[ 2v + 4 = 8 \][/tex]

After combining the like terms, the resulting equation is:

[tex]\[ 2v + 4 = 8 \][/tex]

So, the correct answer is [tex]\(2v + 4 = 8\)[/tex].