The formula for the volume of a cone is [tex] V=\frac{1}{3} b h [/tex]. Solve [tex] V=\frac{1}{3} b h [/tex] for [tex] h [/tex], the height of the cone.

A. [tex] h=\frac{V}{3 b} [/tex]
B. [tex] h=\frac{b}{3 V} [/tex]
C. [tex] h=\frac{b}{3 V} [/tex]
D. [tex] h=\frac{3 V}{b} [/tex]



Answer :

To solve for [tex]\( h \)[/tex] in the formula for the volume of a cone [tex]\( V=\frac{1}{3} b h \)[/tex], we should isolate [tex]\( h \)[/tex] on one side of the equation. Here is a step-by-step solution:

1. Start with the given formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} b h \][/tex]

2. To eliminate the fraction on the right-hand side of the equation, multiply both sides of the equation by 3:
[tex]\[ 3V = b h \][/tex]

3. To isolate [tex]\( h \)[/tex], divide both sides of the equation by [tex]\( b \)[/tex]:
[tex]\[ h = \frac{3V}{b} \][/tex]

Thus, the solution for [tex]\( h \)[/tex] in terms of [tex]\( V \)[/tex] and [tex]\( b \)[/tex] is:
[tex]\[ h = \frac{3V}{b} \][/tex]

So, the correct answer is:
D. [tex]\( h = \frac{3 V}{b} \)[/tex]