Solve [tex]30kx - 6kx = 8[/tex] for [tex]x[/tex].

A. [tex]x = 3k[/tex]
B. [tex]x = \frac{1}{3k}[/tex]
C. [tex]x = \frac{k}{3}[/tex]
D. [tex]x = \frac{3}{k}[/tex]



Answer :

To solve the equation [tex]\(30 k x - 6 k x = 8\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Combine like terms on the left side of the equation:

The left side of the equation has two terms that both contain the variable [tex]\(k x\)[/tex]. So, we can combine these terms:

[tex]\[ 30 k x - 6 k x = 8 \][/tex]

Subtract [tex]\(6 k x\)[/tex] from [tex]\(30 k x\)[/tex]:

[tex]\[ (30 k - 6 k)x = 8 \][/tex]

2. Simplify the expression inside the parentheses:

[tex]\[ 24 k x = 8 \][/tex]

3. Isolate the variable [tex]\(x\)[/tex]:

To solve for [tex]\(x\)[/tex], we need to isolate it on one side of the equation. Divide both sides of the equation by [tex]\(24 k\)[/tex]:

[tex]\[ x = \frac{8}{24 k} \][/tex]

4. Simplify the fraction:

Simplify [tex]\(\frac{8}{24}\)[/tex]:

[tex]\[ x = \frac{1}{3 k} \][/tex]

So, the solution to the equation [tex]\(30 k x - 6 k x = 8\)[/tex] for [tex]\(x\)[/tex] is:

[tex]\[ x = \frac{1}{3 k} \][/tex]

The correct option is B. [tex]\(x = \frac{1}{3 k}\)[/tex].