Solve the formula [tex]C = \pi d[/tex] for [tex]d[/tex].

A. [tex]d = C - \pi[/tex]
B. [tex]d = \pi C[/tex]
C. [tex]d = \frac{\pi}{C}[/tex]
D. [tex]d = \frac{C}{\pi}[/tex]



Answer :

To solve the formula [tex]\(C = \pi d\)[/tex] for [tex]\(d\)[/tex], we need to isolate [tex]\(d\)[/tex] on one side of the equation. Here are the steps:

1. Start with the given formula:
[tex]\[ C = \pi d \][/tex]

2. To isolate [tex]\(d\)[/tex], we need to divide both sides of the equation by [tex]\(\pi\)[/tex]:
[tex]\[ \frac{C}{\pi} = \frac{\pi d}{\pi} \][/tex]

3. Simplify the right side of the equation:
[tex]\[ \frac{C}{\pi} = d \][/tex]

Thus, we have:
[tex]\[ d = \frac{C}{\pi} \][/tex]

By solving [tex]\(C = \pi d\)[/tex] for [tex]\(d\)[/tex], we get the equation [tex]\(d = \frac{C}{\pi}\)[/tex].

Given the options:

A. [tex]\(d = C - \pi\)[/tex]

B. [tex]\(d = \pi C\)[/tex]

C. [tex]\(d = \frac{\pi}{C}\)[/tex]

D. [tex]\(d = \frac{C}{\pi}\)[/tex]

The correct answer is:

D. [tex]\(d = \frac{C}{\pi}\)[/tex]