Use the following function rule to find [tex]$f(3)$[/tex].

[tex]
\begin{array}{l}
f(x)=6-2x \\
f(3)=\square
\end{array}
[/tex]



Answer :

To find the value of [tex]\( f(3) \)[/tex] using the given function rule [tex]\( f(x) = 6 - 2x \)[/tex], we need to substitute [tex]\( x = 3 \)[/tex] into the function.

Here's the step-by-step process:

1. Start with the function rule:
[tex]\[ f(x) = 6 - 2x \][/tex]

2. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ f(3) = 6 - 2(3) \][/tex]

3. Calculate the value inside the parentheses first:
[tex]\[ 2(3) = 6 \][/tex]

4. Subtract this value from 6:
[tex]\[ 6 - 6 = 0 \][/tex]

Thus, the value of [tex]\( f(3) \)[/tex] is:
[tex]\[ f(3) = 0 \][/tex]