Solve the formula [tex]V = Bh[/tex] for [tex]h[/tex]:

A. [tex]h = \frac{B}{V}[/tex]
B. [tex]h = BV[/tex]
C. [tex]h = V - B[/tex]
D. [tex]h = \frac{V}{B}[/tex]



Answer :

To solve the formula [tex]\( V = B \cdot h \)[/tex] for [tex]\( h \)[/tex], follow these steps:

1. Identify the given formula:
The given formula is [tex]\( V = B \cdot h \)[/tex].

2. Determine what you need to isolate:
We need to solve for [tex]\( h \)[/tex], which means we need to isolate [tex]\( h \)[/tex] on one side of the equation.

3. Isolate [tex]\( h \)[/tex]:
Start with the equation:
[tex]\[ V = B \cdot h \][/tex]

To isolate [tex]\( h \)[/tex], divide both sides of the equation by [tex]\( B \)[/tex]. This will leave [tex]\( h \)[/tex] by itself on one side.
[tex]\[ \frac{V}{B} = h \][/tex]

4. Rearrange the equation to solve for [tex]\( h \)[/tex]:
Write the isolated [tex]\( h \)[/tex] on the left side of the equation:
[tex]\[ h = \frac{V}{B} \][/tex]

5. Check the options given:
- A. [tex]\( h = \frac{B}{V} \)[/tex]
- B. [tex]\( h = B \cdot V \)[/tex]
- C. [tex]\( h = V - B \)[/tex]
- D. [tex]\( h = \frac{V}{B} \)[/tex]

The correct solution is in option D:
[tex]\[ h = \frac{V}{B} \][/tex]

Therefore, the correct answer is [tex]\( \boxed{D} \)[/tex].