Answer :
To solve the formula [tex]\( V = B \cdot h \)[/tex] for [tex]\( h \)[/tex], follow these steps:
1. Identify the given formula:
The given formula is [tex]\( V = B \cdot h \)[/tex].
2. Determine what you need to isolate:
We need to solve for [tex]\( h \)[/tex], which means we need to isolate [tex]\( h \)[/tex] on one side of the equation.
3. Isolate [tex]\( h \)[/tex]:
Start with the equation:
[tex]\[ V = B \cdot h \][/tex]
To isolate [tex]\( h \)[/tex], divide both sides of the equation by [tex]\( B \)[/tex]. This will leave [tex]\( h \)[/tex] by itself on one side.
[tex]\[ \frac{V}{B} = h \][/tex]
4. Rearrange the equation to solve for [tex]\( h \)[/tex]:
Write the isolated [tex]\( h \)[/tex] on the left side of the equation:
[tex]\[ h = \frac{V}{B} \][/tex]
5. Check the options given:
- A. [tex]\( h = \frac{B}{V} \)[/tex]
- B. [tex]\( h = B \cdot V \)[/tex]
- C. [tex]\( h = V - B \)[/tex]
- D. [tex]\( h = \frac{V}{B} \)[/tex]
The correct solution is in option D:
[tex]\[ h = \frac{V}{B} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{D} \)[/tex].
1. Identify the given formula:
The given formula is [tex]\( V = B \cdot h \)[/tex].
2. Determine what you need to isolate:
We need to solve for [tex]\( h \)[/tex], which means we need to isolate [tex]\( h \)[/tex] on one side of the equation.
3. Isolate [tex]\( h \)[/tex]:
Start with the equation:
[tex]\[ V = B \cdot h \][/tex]
To isolate [tex]\( h \)[/tex], divide both sides of the equation by [tex]\( B \)[/tex]. This will leave [tex]\( h \)[/tex] by itself on one side.
[tex]\[ \frac{V}{B} = h \][/tex]
4. Rearrange the equation to solve for [tex]\( h \)[/tex]:
Write the isolated [tex]\( h \)[/tex] on the left side of the equation:
[tex]\[ h = \frac{V}{B} \][/tex]
5. Check the options given:
- A. [tex]\( h = \frac{B}{V} \)[/tex]
- B. [tex]\( h = B \cdot V \)[/tex]
- C. [tex]\( h = V - B \)[/tex]
- D. [tex]\( h = \frac{V}{B} \)[/tex]
The correct solution is in option D:
[tex]\[ h = \frac{V}{B} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{D} \)[/tex].