Type the correct answer in the box. Use numerals instead of words.

Consider this expression.
[tex]
\sqrt{a^3-7}+|b|
[/tex]

When [tex]a=2[/tex] and [tex]b=-4[/tex], the value of the expression is [tex]\square[/tex]



Answer :

Let's break down the expression step by step:

1. Start with the given values: [tex]\(a = 2\)[/tex] and [tex]\(b = -4\)[/tex].

2. First, calculate [tex]\(a^3 - 7\)[/tex]:
[tex]\[ a^3 - 7 = 2^3 - 7 \][/tex]
[tex]\[ 2^3 = 8 \][/tex]
[tex]\[ 8 - 7 = 1 \][/tex]

3. Next, take the square root of the result from step 2:
[tex]\[ \sqrt{1} = 1.0 \][/tex]

4. Now, find the absolute value of [tex]\(b\)[/tex]:
[tex]\[ |b| = |-4| \][/tex]
[tex]\[ |b| = 4 \][/tex]

5. Finally, add the square root result (from step 3) to the absolute value of [tex]\(b\)[/tex] (from step 4):
[tex]\[ 1.0 + 4 = 5.0 \][/tex]

So, when [tex]\(a = 2\)[/tex] and [tex]\(b = -4\)[/tex], the value of the expression [tex]\(\sqrt{a^3-7} + |b|\)[/tex] is [tex]\(5.0\)[/tex].