A sequence is defined by the recursive function
[tex]\[ f(n+1) = f(n) - 2 \][/tex]

If [tex]\( f(1) = 10 \)[/tex], what is [tex]\( f(3) \)[/tex]?

A. 1
B. 6
C. 8
D. 30



Answer :

To solve this problem, we need to determine the value of [tex]\( f(3) \)[/tex] given the initial term and the recursive function.

We are given:
- The first term of the sequence, [tex]\( f(1) = 10 \)[/tex].
- The recursive formula, [tex]\( f(n+1) = f(n) - 2 \)[/tex].

Let's find the values step by step:

1. Determine [tex]\( f(2) \)[/tex]:
- Using the recursive formula, substitute [tex]\( n = 1 \)[/tex]:
[tex]\[ f(2) = f(1) - 2 \][/tex]
- Since [tex]\( f(1) = 10 \)[/tex]:
[tex]\[ f(2) = 10 - 2 = 8 \][/tex]

2. Determine [tex]\( f(3) \)[/tex]:
- Using the recursive formula, substitute [tex]\( n = 2 \)[/tex]:
[tex]\[ f(3) = f(2) - 2 \][/tex]
- Since [tex]\( f(2) = 8 \)[/tex]:
[tex]\[ f(3) = 8 - 2 = 6 \][/tex]

Therefore, the value of [tex]\( f(3) \)[/tex] is [tex]\( 6 \)[/tex].

The correct answer is:
6