Select the correct answer.

Which equation is equivalent to the given equation?

[tex]\[ x^2 - 10x = 14 \][/tex]

A. [tex]\((x - 10)^2 = 114\)[/tex]

B. [tex]\((x - 5)^2 = -11\)[/tex]

C. [tex]\((x - 5)^2 = 39\)[/tex]

D. [tex]\((x - 10)^2 = -86\)[/tex]



Answer :

Let's solve the given equation step-by-step:

1. Given Equation:
[tex]\[ x^2 - 10x = 14 \][/tex]

2. Rearrange to Standard Form:
[tex]\[ x^2 - 10x - 14 = 0 \][/tex]

3. Completing the Square:
To complete the square for the expression [tex]\( x^2 - 10x \)[/tex]:

a. Take the coefficient of [tex]\(x\)[/tex], which is -10, divide by 2, and square it:
[tex]\[ \left(\frac{-10}{2}\right)^2 = (-5)^2 = 25 \][/tex]

b. Add and subtract this squared term inside the equation:
[tex]\[ x^2 - 10x + 25 - 25 - 14 = 0 \][/tex]
[tex]\[ (x - 5)^2 - 25 - 14 = 0 \][/tex]
Simplify:
[tex]\[ (x - 5)^2 - 39 = 0 \][/tex]

4. Equivalent Equation:
Move the constant term to the other side of the equation:
[tex]\[ (x - 5)^2 = 39 \][/tex]

Thus, the equation equivalent to the given equation [tex]\(x^2 - 10x = 14\)[/tex] is:
[tex]\[ (x - 5)^2 = 39 \][/tex]

Among the provided options, the correct answer is:
[tex]\[ (x - 5)^2 = 39 \][/tex]