Match the multiplication problem on the left with the simplified polynomial.

[tex]\[
\begin{tabular}{ll}
$4 x\left(4 x^2 - x + 3\right)$ & \\
$(8 x + 1)(2 x - 3)$ & \\
$4 x^2(4 x)$ & \\
$(2 x + 3)\left(8 x^2 - 4 x + 3\right)$ & \\
\end{tabular}
\][/tex]

Options:

A. [tex]$16 x^2$[/tex]
B. [tex]$16 x^2 - 2$[/tex]
C. [tex]$16 x^3$[/tex]
D. [tex]$16 x^3 - 4$[/tex]
E. [tex]$16 x^3 + 1$[/tex]



Answer :

To match the multiplication problems with their corresponding simplified polynomials, we need to carefully compare each problem on the left with each solution option on the right. Here's the detailed solution:

1. Consider the first multiplication problem: [tex]\( 4x(4x^2 - x + 3) \)[/tex].
- The correct simplified polynomial for this is found by matching:
[tex]\[ 4x(4x^2 - x + 3) = 16x + 3x. \][/tex]
- Therefore, [tex]\( 4x(4x^2 - x + 3) \)[/tex] matches with [tex]\( 16x + 3x \)[/tex].

2. For the second multiplication problem: [tex]\( (8x + 1)(2x - 3) \)[/tex].
- By comparing options, the simplified polynomial is:
[tex]\[ (8x + 1)(2x - 3) = 16x^2 - 2. \][/tex]
- Thus, [tex]\( (8x + 1)(2x - 3) \)[/tex] matches with [tex]\( 16x^2 - 2 \)[/tex].

3. Now look at the third multiplication problem: [tex]\( 4x^2(4x) \)[/tex].
- The correct match is:
[tex]\[ 4x^2(4x) = 16x^3. \][/tex]
- Hence, [tex]\( 4x^2(4x) \)[/tex] matches with [tex]\( 16x^3 \)[/tex].

4. Finally, for the fourth multiplication problem: [tex]\( (2x + 3)(8x^2 - 4x + 3) \)[/tex].
- The corresponding simplified polynomial is:
[tex]\[ (2x + 3)(8x^2 - 4x + 3) = 16x^3 - 4. \][/tex]
- So, [tex]\( (2x + 3)(8x^2 - 4x + 3) \)[/tex] matches with [tex]\( 16x^3 - 4 \)[/tex].

To summarize:

[tex]\[ \begin{array}{ll} 4x(4x^2 - x + 3) & 16x + 3x \\ (8x + 1)(2x - 3) & 16x^2 - 2 \\ 4x^2(4x) & 16x^3 \\ (2x + 3)(8x^2 - 4x + 3) & 16x^3 - 4 \\ \end{array} \][/tex]

This is the correct matching for each multiplication problem with its corresponding simplified polynomial.