Select the correct answer to the following equation: [tex]-x^{\frac{3}{2}} = -27[/tex].

A. 9
B. [tex]-9[/tex]
C. No solution, the answer cannot be negative
D. [tex]-3[/tex]



Answer :

To solve the equation [tex]\(-x^{\frac{3}{2}} = -27\)[/tex], follow these steps:

1. Remove the negative sign: We can multiply both sides of the equation by [tex]\(-1\)[/tex] to simplify it:

[tex]\[ x^{\frac{3}{2}} = 27 \][/tex]

2. Isolate [tex]\(x\)[/tex]: To solve for [tex]\(x\)[/tex], we need to undo the exponentiation of [tex]\(\frac{3}{2}\)[/tex]. We can do this by raising both sides of the equation to the reciprocal of [tex]\(\frac{3}{2}\)[/tex], which is [tex]\(\frac{2}{3}\)[/tex]:

[tex]\[ \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} = 27^{\frac{2}{3}} \][/tex]

This simplifies to:

[tex]\[ x = 27^{\frac{2}{3}} \][/tex]

3. Evaluate [tex]\(27^{\frac{2}{3}}\)[/tex]: To find [tex]\(27^{\frac{2}{3}}\)[/tex], we recognize that 27 can be written as [tex]\(3^3\)[/tex]. Therefore,

[tex]\[ 27^{\frac{2}{3}} = (3^3)^{\frac{2}{3}} = 3^{3 \cdot \frac{2}{3}} = 3^2 = 9 \][/tex]

Thus, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(9\)[/tex].

So, the correct answer to the given equation is:

[tex]\[ \boxed{9} \][/tex]