What is the factored form of the polynomial?

[tex]\[ x^2 + 9x + 20 \][/tex]

A. [tex]\((x-4)(x-5)\)[/tex]

B. [tex]\((x-2)(x-10)\)[/tex]

C. [tex]\((x+4)(x+5)\)[/tex]

D. [tex]\((x+2)(x+10)\)[/tex]



Answer :

To factor the polynomial [tex]\( x^2 + 9x + 20 \)[/tex], we follow these steps:

1. Identify coefficients:
- The quadratic polynomial is in the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 9 \)[/tex], and [tex]\( c = 20 \)[/tex].

2. Find two numbers that multiply to [tex]\( a \cdot c \)[/tex] and add to [tex]\( b \)[/tex]:
- We need two numbers that multiply to [tex]\( 1 \times 20 = 20 \)[/tex] and add up to [tex]\( 9 \)[/tex].

3. Determine the pair of numbers:
- The pairs of numbers that multiply to 20 are:
- [tex]\( 1 \times 20 \)[/tex]
- [tex]\( 2 \times 10 \)[/tex]
- [tex]\( 4 \times 5 \)[/tex]

- Of these pairs, the one that adds up to [tex]\( 9 \)[/tex] is [tex]\( 4 \)[/tex] and [tex]\( 5 \)[/tex].

4. Write the polynomial in its factored form:
- The factors of [tex]\( x^2 + 9x + 20 \)[/tex] are [tex]\( x + 4 \)[/tex] and [tex]\( x + 5 \)[/tex].

5. Construct the factored form:
- Therefore, the factored form of [tex]\( x^2 + 9x + 20 \)[/tex] is [tex]\( (x + 4)(x + 5) \)[/tex].

So, the factored form of the polynomial [tex]\( x^2 + 9x + 20 \)[/tex] is:
[tex]\[ (x + 4)(x + 5) \][/tex]

And from the given options, the correct answer is:
[tex]\[ (x+4)(x+5) \][/tex]