Sure, let's solve each mathematical operation step-by-step:
1. Calculate [tex]\(2 * 5\)[/tex]:
[tex]\[
2 * 5 = 10
\][/tex]
So, [tex]\[
2 * 5 = 10
\][/tex]
Therefore, the result is [tex]\( \boxed{10} \)[/tex].
2. Calculate [tex]\(4^{} 3\)[/tex]:
[tex]\[
4^3 = 4 \times 4 \times 4 = 64
\][/tex]
So, [tex]\[
4^3 = 64
\][/tex]
Therefore, the result is [tex]\( \boxed{64} \)[/tex].
3. Calculate [tex]\(7 / 2\)[/tex]:
[tex]\[
7 / 2 = 3.5
\][/tex]
So, [tex]\[
7 / 2 = 3.5
\][/tex]
Therefore, the result is [tex]\( \boxed{3.5} \)[/tex].
4. Calculate [tex]\(17 \% 3\)[/tex]:
[tex]\[
17 \% = 17 \mod 3 = 17 - ( \lfloor \frac{17}{3} \rfloor * 3)
\][/tex]
[tex]\[
17 \mod 3 = 17 - (5 * 3) = 17 - 15 = 2
\][/tex]
So, [tex]\[
17 \% 3 = 2
\][/tex]
Therefore, the result is [tex]\( \boxed{2} \)[/tex].
In summary:
[tex]\[
\begin{array}{l}
2 * 5 = \boxed{10} \\
4^{} 3 = \boxed{64}
\end{array}
\][/tex]
[tex]\[
7 / 2 = \boxed{3.5}
\][/tex]
[tex]\[
17 \% 3 = \boxed{2}
\][/tex]