Select the correct answer.

What is the solution set of this inequality?
[tex]\[ 8(x-5) - 3x \geq -20 \][/tex]

A. [tex]\( x \geq 4 \)[/tex]
B. [tex]\( x \leq 12 \)[/tex]
C. [tex]\( x \leq -12 \)[/tex]
D. [tex]\( x \geq -3 \)[/tex]



Answer :

To solve the inequality [tex]\( 8(x-5) - 3x \geq -20 \)[/tex], follow these steps:

1. Distribute the 8 across the term [tex]\((x-5)\)[/tex]:
[tex]\[ 8(x-5) - 3x \geq -20 \][/tex]
becomes:
[tex]\[ 8x - 40 - 3x \geq -20 \][/tex]

2. Combine like terms on the left-hand side:
[tex]\[ (8x - 3x) - 40 \geq -20 \][/tex]
simplifies to:
[tex]\[ 5x - 40 \geq -20 \][/tex]

3. Add 40 to both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 5x - 40 + 40 \geq -20 + 40 \][/tex]
simplifies to:
[tex]\[ 5x \geq 20 \][/tex]

4. Divide both sides by 5 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{5x}{5} \geq \frac{20}{5} \][/tex]
simplifies to:
[tex]\[ x \geq 4 \][/tex]

Thus, the solution set of the inequality [tex]\( 8(x-5) - 3x \geq -20 \)[/tex] is:
[tex]\[ x \geq 4 \][/tex]

So the correct answer is:

A. [tex]\( x \geq 4 \)[/tex]