Subtract.

[tex]\[ \left(9a^2 - 7b + 3c^3 - 4\right) - \left(6a^2 + 6b - 3c^3 - 4\right) \][/tex]

A. [tex]\( 15a^2 - b - 8 \)[/tex]

B. [tex]\( 3a^2 - b \)[/tex]

C. [tex]\( 3a^2 - 13b + 6c^3 \)[/tex]

D. [tex]\( -3a^2 + 13b - 6c^3 \)[/tex]



Answer :

To solve the problem [tex]\(\left(9 a^2 - 7 b + 3 c^3 - 4\right) - \left(6 a^2 + 6 b - 3 c^3 - 4\right)\)[/tex], follow these detailed steps:

1. Rewrite the expression to distribute the negative sign:

[tex]\[ (9 a^2 - 7 b + 3 c^3 - 4) - (6 a^2 + 6 b - 3 c^3 - 4) \][/tex]

This becomes:

[tex]\[ 9 a^2 - 7 b + 3 c^3 - 4 - 6 a^2 - 6 b + 3 c^3 + 4 \][/tex]

2. Group the like terms together:

[tex]\[ (9 a^2 - 6 a^2) + (-7 b - 6 b) + (3 c^3 + 3 c^3) + (-4 + 4) \][/tex]

3. Combine the like terms:

- For [tex]\(a^2\)[/tex] terms: [tex]\(9 a^2 - 6 a^2 = 3 a^2\)[/tex]
- For [tex]\(b\)[/tex] terms: [tex]\(-7 b - 6 b = -13 b\)[/tex]
- For [tex]\(c^3\)[/tex] terms: [tex]\(3 c^3 + 3 c^3 = 6 c^3\)[/tex]
- For constant terms: [tex]\(-4 + 4 = 0\)[/tex]

4. Write the final simplified expression:

[tex]\[ 3 a^2 - 13 b + 6 c^3 \][/tex]

Thus, the simplified expression is [tex]\(\boxed{3 a^2 - 13 b + 6 c^3}\)[/tex].