Multiply: [tex]\left(6 a^3-3 b^3\right)\left(5 a^2+4 b^2\right)[/tex]

A. [tex]30 a^6+24 a^3 b^2-15 a^2 b^3-12 b^6[/tex]

B. [tex]30 a^5+24 a^3 b^2-15 a^2 b^3-12 b^5[/tex]

C. [tex]11 a^5+10 a^3 b^2+2 a^2 b^3+b^5[/tex]

D. [tex]30 a^5+9 a^5 b^5-12 b^5[/tex]



Answer :

Let's multiply the given polynomials:

[tex]\[ (6a^3 - 3b^3)(5a^2 + 4b^2) \][/tex]

We'll use the distributive property (also known as the FOIL method for binomials) to expand this product. Here’s a step-by-step breakdown:

1. Multiply [tex]\(6a^3\)[/tex] with each term inside the second polynomial:
[tex]\[ 6a^3 \cdot 5a^2 = 30a^5 \][/tex]
[tex]\[ 6a^3 \cdot 4b^2 = 24a^3b^2 \][/tex]

2. Multiply [tex]\(-3b^3\)[/tex] with each term inside the second polynomial:
[tex]\[ -3b^3 \cdot 5a^2 = -15a^2b^3 \][/tex]
[tex]\[ -3b^3 \cdot 4b^2 = -12b^5 \][/tex]

3. Combine all these terms:
[tex]\[ 30a^5 + 24a^3b^2 - 15a^2b^3 - 12b^5 \][/tex]

Hence, the product of [tex]\((6a^3 - 3b^3)(5a^2 + 4b^2)\)[/tex] is:

[tex]\[ 30a^5 + 24a^3b^2 - 15a^2b^3 - 12b^5 \][/tex]

Therefore, the correct answer is:

[tex]\[ 30a^5 + 24a^3b^2 - 15a^2b^3 - 12b^5 \][/tex]