To find the slope of the line that contains the points [tex]\((-3, 4)\)[/tex] and [tex]\((-1, 8)\)[/tex], we use the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]. The formula for the slope [tex]\(m\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
1. Identify the coordinates:
- [tex]\(x_1 = -3\)[/tex]
- [tex]\(y_1 = 4\)[/tex]
- [tex]\(x_2 = -1\)[/tex]
- [tex]\(y_2 = 8\)[/tex]
2. Calculate the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = 8 - 4 = 4 \][/tex]
3. Calculate the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = -1 - (-3) = -1 + 3 = 2 \][/tex]
4. Calculate the slope:
[tex]\[ m = \frac{4}{2} = 2.0 \][/tex]
So, the slope of the line that contains the points [tex]\((-3, 4)\)[/tex] and [tex]\((-1, 8)\)[/tex] is [tex]\(2.0\)[/tex].