Which equation is equivalent to [tex]$4s = t + 2$[/tex]?

A. [tex]s = \frac{t - 2}{4}[/tex]
B. [tex]s = \frac{4}{t + 2}[/tex]
C. [tex]s = \frac{t + 2}{4}[/tex]
D. [tex]s = t + 6[/tex]



Answer :

To determine which equation is equivalent to [tex]\(4s = t + 2\)[/tex], let's isolate [tex]\(s\)[/tex] by solving the equation step-by-step.

Given equation:
[tex]\[4s = t + 2\][/tex]

Step 1: Divide both sides of the equation by 4 to isolate [tex]\(s\)[/tex]:
[tex]\[\frac{4s}{4} = \frac{t + 2}{4}\][/tex]

Step 2: Simplify the left side of the equation:
[tex]\[s = \frac{t + 2}{4}\][/tex]

Thus, the equivalent equation is:
[tex]\[s = \frac{t + 2}{4}\][/tex]

So, the correct option is:
[tex]\[S = \frac{t+2}{4}\][/tex]