Answered

Question 1 (Multiple Choice, Worth 2 points)

Which expression is equivalent to [tex]\left(\frac{y^{-3} z^5}{z^{-4} y^6}\right)^{-2}[/tex]?

A. [tex]\frac{y^{18}}{z^{18}}[/tex]
B. [tex]\frac{z^{18}}{y^{18}}[/tex]
C. [tex]\frac{y^9}{z^9}[/tex]
D. [tex]\frac{z^9}{y^9}[/tex]



Answer :

Let's solve the given expression step-by-step to determine which option is equivalent to

[tex]\[ \left(\frac{y^{-3} z^5}{z^{-4} y^6}\right)^{-2} \][/tex]

Step 1: Simplify the inner fraction

The given expression inside the parentheses is

[tex]\[ \frac{y^{-3} z^5}{z^{-4} y^6} \][/tex]

We can simplify this by handling the base variables separately:

1. Simplify the terms with [tex]\( y \)[/tex]:

[tex]\[ \frac{y^{-3}}{y^6} = y^{-3-6} = y^{-9} \][/tex]

2. Simplify the terms with [tex]\( z \)[/tex]:

[tex]\[ \frac{z^5}{z^{-4}} = z^{5-(-4)} = z^{5+4} = z^9 \][/tex]

So the simplified inner fraction becomes:

[tex]\[ \frac{y^{-3} z^5}{z^{-4} y^6} = y^{-9} z^9 \][/tex]

Step 2: Apply the outer exponent -2

Next, apply the exponent of -2 to the simplified expression [tex]\(y^{-9} z^9\)[/tex]:

[tex]\[ (y^{-9} z^9)^{-2} = y^{-9 \times -2} \cdot z^{9 \times -2} = y^{18} \cdot z^{-18} \][/tex]

Simplifying this further, we have:

[tex]\[ y^{18} z^{-18} = \frac{y^{18}}{z^{18}} \][/tex]

Conclusion:

The expression [tex]\(\left(\frac{y^{-3} z^5}{z^{-4} y^6}\right)^{-2}\)[/tex] simplifies to [tex]\(\frac{y^{18}}{z^{18}}\)[/tex].

So, the correct answer is:

[tex]\[ \boxed{\frac{y^{18}}{z^{18}}} \][/tex]