Answered

Simplify [tex]\left(c^2\right)^{-3}[/tex].

A. [tex]c[/tex]
B. [tex]-c^6[/tex]
C. [tex]\frac{1}{c}[/tex]
D. [tex]\frac{1}{c^6}[/tex]



Answer :

To simplify the expression [tex]\(\left(c^2\right)^{-3}\)[/tex], we will use the properties of exponents. Let's go through the steps together.

1. Understand the notation:
[tex]\(\left(c^2\right)^{-3}\)[/tex] means raising [tex]\(c^2\)[/tex] to the power of [tex]\(-3\)[/tex].

2. Use the power of a power rule:
The property [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] allows us to simplify expressions where one exponent is raised to another. Applying this rule:

[tex]\[ \left(c^2\right)^{-3} = c^{2 \cdot (-3)} \][/tex]

3. Multiply the exponents:
Compute the product of the exponents [tex]\(2 \cdot (-3)\)[/tex]:

[tex]\[ 2 \cdot (-3) = -6 \][/tex]

4. Rewrite the expression:
So, we have:

[tex]\[ c^{2 \cdot (-3)} = c^{-6} \][/tex]

5. Simplify the negative exponent:
An expression with a negative exponent [tex]\(a^{-n}\)[/tex] can be rewritten as [tex]\(\frac{1}{a^n}\)[/tex]. Therefore, we translate [tex]\(c^{-6}\)[/tex] to:

[tex]\[ c^{-6} = \frac{1}{c^6} \][/tex]

So, the simplified form of [tex]\(\left(c^2\right)^{-3}\)[/tex] is [tex]\(\frac{1}{c^6}\)[/tex].

Hence, among the given options, the correct answer is [tex]\(\boxed{\frac{1}{c^6}}\)[/tex].