Answered

Simplify [tex]\left(\frac{a^{-3}}{2 b^4}\right)^3[/tex].

A. [tex]8 b^{12} a^9[/tex]
B. [tex]\frac{8 b^{12}}{a^9}[/tex]
C. [tex]\frac{1}{6 a^9 b^{12}}[/tex]
D. [tex]\frac{1}{8 a^9 b^{12}}[/tex]



Answer :

To simplify the expression [tex]\(\left(\frac{a^{-3}}{2 b^4}\right)^3\)[/tex], let's break it down step by step.

1. Start with the given expression:
[tex]\[ \left(\frac{a^{-3}}{2 b^4}\right)^3 \][/tex]

2. Apply the power to both the numerator and the denominator separately:
[tex]\[ \left(\frac{a^{-3}}{2 b^4}\right)^3 = \frac{(a^{-3})^3}{(2 b^4)^3} \][/tex]

3. Raise the numerator [tex]\(a^{-3}\)[/tex] to the power of 3:
[tex]\[ (a^{-3})^3 = a^{-3 \cdot 3} = a^{-9} \][/tex]

4. Raise the denominator [tex]\(2 b^4\)[/tex] to the power of 3:
[tex]\[ (2 b^4)^3 = 2^3 \cdot (b^4)^3 = 8 \cdot b^{4 \cdot 3} = 8b^{12} \][/tex]

5. Now combine the results from the numerator and the denominator:
[tex]\[ \frac{a^{-9}}{8 b^{12}} \][/tex]

6. Rewrite [tex]\(a^{-9}\)[/tex] using the property of negative exponents ([tex]\(a^{-n} = \frac{1}{a^n}\)[/tex]):
[tex]\[ a^{-9} = \frac{1}{a^9} \][/tex]

7. Substitute this back into the fraction:
[tex]\[ \frac{\frac{1}{a^9}}{8 b^{12}} = \frac{1}{a^9 \cdot 8 b^{12}} = \frac{1}{8 a^9 b^{12}} \][/tex]

Finally, the simplified expression is:
[tex]\[ \frac{1}{8 a^9 b^{12}} \][/tex]

So, the correct choice is:
[tex]\(\boxed{\frac{1}{8 a^9 b^{12}}}\)[/tex]