By the [tex]$\square$[/tex] the sum of the angles in a triangle is equal to [tex]$180^{\circ}$[/tex]. Therefore, [tex]$m \angle A + m \angle B + m \angle C = 180^{\circ}$[/tex].

Using the [tex]$\square$[/tex]:
[tex]\[ (5x)^{\circ} + 90^{\circ} + (x + 10)^{\circ} = 180^{\circ} \][/tex]

To solve for [tex]$x$[/tex], first combine like terms to get:
[tex]\[ 6x + 100 = 180 \][/tex]

Using the [tex]$\square$[/tex]:
[tex]\[ 6x = 80 \][/tex]

Then, using the division property of equality:
[tex]\[ x = 13 \frac{1}{3} \][/tex]

To find the measure of angle [tex]$A$[/tex], use the substitution property to get:
[tex]\[ m \angle A = 5\left(13 \frac{1}{3}\right)^{\circ} \][/tex]

Finally, simplifying the expression gets:
[tex]\[ m \angle A = 66 \frac{2}{3}^{\circ} \][/tex]

Choose the correct properties to fill in the blanks:

1. substitution property
2. subtraction property of equality
3. multiplication property of equality
4. division property of equality
5. triangle sum theorem
6. distributive property



Answer :

Let's solve this step-by-step to determine the correct values of [tex]\( x \)[/tex] and [tex]\( \angle A \)[/tex], filling in the blanks with the appropriate mathematical properties:

1. Triangle Sum Theorem: The sum of the angles in a triangle is equal to [tex]\( 180^\circ \)[/tex]. Therefore, [tex]\( m \angle A + m \angle B + m \angle C = 180^\circ \)[/tex].

2. Using the given information, we have the equation:
[tex]\[ (5x)^\circ + 90^\circ + (x + 10)^\circ = 180^\circ \][/tex]

3. Combine like terms: To solve for [tex]\( x \)[/tex], first combine like terms:
[tex]\[ 5x + x + 90 + 10 = 180 \][/tex]
Simplifying, we get:
[tex]\[ 6x + 100 = 180 \][/tex]

4. Subtraction Property of Equality: Use this property to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x = 180 - 100 \][/tex]
Simplifying, we get:
[tex]\[ 6x = 80 \][/tex]

5. Division Property of Equality: Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{80}{6} \][/tex]
Simplifying, we get:
[tex]\[ x = 13 \frac{1}{3} \][/tex]

6. Substitution Property: To find the measure of [tex]\( \angle A \)[/tex], substitute [tex]\( x = 13 \frac{1}{3} \)[/tex] into [tex]\( 5x \)[/tex]:
[tex]\[ m \angle A = 5 \left( 13 \frac{1}{3} \right)^\circ \][/tex]

7. Simplifying the expression: We get:
[tex]\[ m \angle A = 66 \frac{2}{3}^\circ \][/tex]

Thus, the value of [tex]\( x \)[/tex] is [tex]\( 13 \frac{1}{3} \)[/tex] and the measure of [tex]\( \angle A \)[/tex] is [tex]\( 66 \frac{2}{3}^\circ \)[/tex].