Suppose that the function [tex]f[/tex] is defined, for all real numbers, as follows:

[tex]\[
f(x) =
\begin{cases}
-\frac{1}{2} x - 1 & \text{if } x \leq -1 \\
(x + 1)^2 - 3 & \text{if } -1 \ \textless \ x \ \textless \ 2 \\
-1 & \text{if } x \geq 2
\end{cases}
\][/tex]

Find [tex]f(-2)[/tex], [tex]f(-1)[/tex], and [tex]f(1)[/tex]:

[tex]\[
\begin{array}{c}
f(-2) = \\
f(-1) = \\
f(1) =
\end{array}
\][/tex]



Answer :

Let us evaluate the function [tex]\( f \)[/tex] at the given points, using its definition:

1. Finding [tex]\( f(-2) \)[/tex]:

The function [tex]\( f(x) \)[/tex] has three different cases. Since [tex]\( -2 \leq -1 \)[/tex], we use the first case:
[tex]\[ f(x) = -\frac{1}{2}x - 1 \quad \text{if} \quad x \leq -1 \][/tex]
Substituting [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -\frac{1}{2}(-2) - 1 = 1 - 1 = 0 \][/tex]
Therefore,
[tex]\[ f(-2) = 0 \][/tex]

2. Finding [tex]\( f(-1) \)[/tex]:

For [tex]\( x = -1 \)[/tex], we again use the first case because [tex]\( -1 \leq -1 \)[/tex]:
[tex]\[ f(x) = -\frac{1}{2}x - 1 \quad \text{if} \quad x \leq -1 \][/tex]
Substituting [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -\frac{1}{2}(-1) - 1 = \frac{1}{2} - 1 = -\frac{1}{2} \][/tex]
Therefore,
[tex]\[ f(-1) = -0.5 \][/tex]

3. Finding [tex]\( f(1) \)[/tex]:

Since [tex]\( -1 < 1 < 2 \)[/tex], we use the second case:
[tex]\[ f(x) = (x + 1)^2 - 3 \quad \text{if} \quad -1 < x < 2 \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = (1 + 1)^2 - 3 = 2^2 - 3 = 4 - 3 = 1 \][/tex]
Therefore,
[tex]\[ f(1) = 1 \][/tex]

Putting it all together, we have:
[tex]\[ \begin{array}{c} f(-2) = 0 \\ f(-1) = -0.5 \\ f(1) = 1 \end{array} \][/tex]