Answer :

To evaluate the expression [tex]\(4(5x - 3 - 2x)^2\)[/tex] where [tex]\(x = 5\)[/tex], follow these detailed steps:

1. Substitute the value of [tex]\(x\)[/tex]:
Substitute [tex]\(x = 5\)[/tex] into the expression.
[tex]\[ 4(5(5) - 3 - 2(5))^2 \][/tex]

2. Evaluate the terms inside the parentheses:
First, calculate [tex]\(5x\)[/tex] and [tex]\(2x\)[/tex]:
[tex]\[ 5 \cdot 5 = 25 \][/tex]
[tex]\[ 2 \cdot 5 = 10 \][/tex]
Now, substitute these values back into the expression:
[tex]\[ 4(25 - 3 - 10)^2 \][/tex]

3. Simplify the inner expression:
Perform the subtraction inside the parentheses:
[tex]\[ 25 - 3 = 22 \][/tex]
[tex]\[ 22 - 10 = 12 \][/tex]
So now the expression is:
[tex]\[ 4(12)^2 \][/tex]

4. Square the inner result:
Calculate [tex]\(12^2\)[/tex]:
[tex]\[ 12^2 = 144 \][/tex]

5. Multiply by 4:
Finally, multiply the squared result by 4:
[tex]\[ 4 \cdot 144 = 576 \][/tex]

Thus, the evaluated result of the expression [tex]\(4(5x - 3 - 2x)^2\)[/tex] when [tex]\(x = 5\)[/tex] is [tex]\(\boxed{576}\)[/tex].

Other Questions