Answered

Question 1 of 3

\begin{tabular}{|c|c|}
\hline
-1 & -7.5 \\
\hline
0 & -7 \\
\hline
1 & -6 \\
\hline
2 & -4 \\
\hline
3 & 0 \\
\hline
4 & 8 \\
\hline
5 & 24 \\
\hline
6 & 56 \\
\hline
\end{tabular}

Select all the [tex]$x$[/tex]- and [tex]$y$[/tex]-intercepts for the function [tex]$f(x)$[/tex].

A. The [tex]$y$[/tex]-intercept is [tex]$(0, -7)$[/tex].
B. The [tex]$y$[/tex]-intercepts are [tex]$(0, -7)$[/tex] and [tex]$(3, 0)$[/tex].
C. The [tex]$x$[/tex]-intercept is [tex]$(3, 0)$[/tex].
D. The [tex]$x$[/tex]-intercept is [tex]$(0, -7)$[/tex].
E. The [tex]$x$[/tex]-intercept is [tex]$(3, 0)$[/tex].



Answer :

To determine the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-intercepts of the function [tex]\(f(x)\)[/tex] that corresponds to the given table of points, we must identify where the graph of the function crosses the [tex]\(x\)[/tex]-axis and [tex]\(y\)[/tex]-axis.

1. Finding the [tex]\(y\)[/tex]-intercept(s): The [tex]\(y\)[/tex]-intercept(s) occur where [tex]\(x = 0\)[/tex].
- From the table, the point where [tex]\(x = 0\)[/tex] is [tex]\((0, -7)\)[/tex].

Therefore, the only [tex]\(y\)[/tex]-intercept is [tex]\((0, -7)\)[/tex].

2. Finding the [tex]\(x\)[/tex]-intercept(s): The [tex]\(x\)[/tex]-intercept(s) occur where [tex]\(y = 0\)[/tex].
- From the table, the point where [tex]\(y = 0\)[/tex] is [tex]\((3, 0)\)[/tex].

Therefore, the only [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex].

Given this information:

- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -7)\)[/tex].
- The [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex].

Thus, the correct selections are:

- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -7)\)[/tex].
- The [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex].

Incorrect statements from the choices would include:
- The [tex]\(y\)[/tex]-intercepts are [tex]\((0, -7)\)[/tex] and [tex]\((3, 0)\)[/tex]. (This statement is incorrect because [tex]\((3, 0)\)[/tex] is the [tex]\(x\)[/tex]-intercept, not a [tex]\(y\)[/tex]-intercept.)
- The [tex]\(x\)[/tex]-intercept is [tex]\((0, -7)\)[/tex]. (Incorrect because [tex]\((0, -7)\)[/tex] is the [tex]\(y\)[/tex]-intercept.)
- The 9-intercept is [tex]\((3, 0)\)[/tex]. (There is no such thing as a 9-intercept in this context.)

So, the correct answers are:

- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -7)\)[/tex].
- The [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex].