Answered

2. Which of the following shows the general formula for factoring the difference of cubes?

A. [tex]\((a-b)\left(a^2+ab+b^2\right)\)[/tex]

B. [tex]\((a+b)\left(a^2-ab+b^2\right)\)[/tex]

C. [tex]\((a+b)\left(a^2+ab+b^2\right)\)[/tex]

D. [tex]\((a-b)\left(a^2-ab-b^2\right)\)[/tex]



Answer :

To determine which of the provided expressions is the general formula for factoring the difference of cubes, we recall that the difference of cubes can be written as [tex]\( a^3 - b^3 \)[/tex].

The given formula options are:
1. [tex]\( (a-b) \left(a^2 + ab + b^2 \right) \)[/tex]
2. [tex]\( (a+b) \left(a^2 - ab + b^2 \right) \)[/tex]
3. [tex]\( (a+b) \left(a^2 + ab + b^2 \right) \)[/tex]
4. [tex]\( (a-b) \left(a^2 - ab - b^2 \right) \)[/tex]

Let's recall the general factoring formulas for sum and difference of cubes:
- For [tex]\( a^3 - b^3 \)[/tex] (difference of cubes):
[tex]\[ a^3 - b^3 = (a - b) \left(a^2 + ab + b^2 \right) \][/tex]
- For [tex]\( a^3 + b^3 \)[/tex] (sum of cubes):
[tex]\[ a^3 + b^3 = (a + b) \left(a^2 - ab + b^2 \right) \][/tex]

Based on these formulas, we see that the correct formula for factoring the difference of cubes [tex]\( a^3 - b^3 \)[/tex] is:

[tex]\[ (a - b) \left(a^2 + ab + b^2 \right) \][/tex]

Among the provided options, the correct one that matches this formula is:

[tex]\[ (a - b) \left(a^2 + ab + b^2 \right) \][/tex]

Therefore, the correct answer is:

1. [tex]\( (a-b) \left(a^2 + ab + b^2 \right) \)[/tex]