Select all the correct answers.

Which expressions are equivalent to the given expression?
[tex]\[ y^{-8} y^3 x^0 x^{-2} \][/tex]

A. [tex]\(\frac{1}{y^{2 x}}\)[/tex]

B. [tex]\(\frac{g^2}{y^{11}}\)[/tex]

C. [tex]\(y^{-24}\)[/tex]

D. [tex]\(x^2 y^{-11}\)[/tex]

E. [tex]\(x^{-2} y^{-5}\)[/tex]

F. [tex]\(\frac{1}{x^2 y^5}\)[/tex]



Answer :

To determine which expressions are equivalent to the given expression [tex]\( y^{-8} y^3 x^0 x^{-2} \)[/tex], we need to simplify it using the properties of exponents. Here is the step-by-step process:

1. Combine the terms with the same base:
- For the [tex]\(y\)[/tex] terms: [tex]\( y^{-8} \cdot y^3 \)[/tex]
Using the property of exponents [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex]:
[tex]\[ y^{-8} \cdot y^3 = y^{-8 + 3} = y^{-5} \][/tex]

- For the [tex]\(x\)[/tex] terms: [tex]\( x^0 \cdot x^{-2} \)[/tex]
Using the property of exponents [tex]\( a^0 = 1 \)[/tex] for any non-zero [tex]\(a\)[/tex]:
[tex]\[ x^0 = 1 \][/tex]
Therefore,
[tex]\[ x^0 \cdot x^{-2} = 1 \cdot x^{-2} = x^{-2} \][/tex]

2. Combine the simplified terms:
[tex]\[ y^{-5} \cdot x^{-2} = x^{-2} \cdot y^{-5} \][/tex]

The simplified expression is [tex]\( x^{-2} \cdot y^{-5} \)[/tex].

Now, let's check if any of the given expressions are equivalent to [tex]\( x^{-2} \cdot y^{-5} \)[/tex]:

1. [tex]\( \frac{1}{y^{2 x}} \)[/tex]
- This is not equivalent because it has a completely different form and involves different exponents.

2. [tex]\( \frac{g^2}{y^{11}} \)[/tex]
- This is not equivalent because it involves an entirely different base [tex]\(g\)[/tex] and different exponents.

3. [tex]\( y^{-24} \)[/tex]
- This is not equivalent because it only involves [tex]\( y \)[/tex] and the exponent does not match [tex]\( -5 \)[/tex].

4. [tex]\( x^2 y^{-11} \)[/tex]
- This is not equivalent because the exponents of both [tex]\( x \)[/tex] and [tex]\( y \)[/tex] do not match [tex]\( -2 \)[/tex] and [tex]\( -5 \)[/tex], respectively.

5. [tex]\( x^{-2} y^{-5} \)[/tex]
- This matches exactly with our simplified expression and is, therefore, equivalent.

6. [tex]\( \frac{1}{x^2 y^5} \)[/tex]
- This is not equivalent because the exponents of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are not negative.

The correct equivalent expression is:
[tex]\[ x^{-2} y^{-5} \][/tex]

Answer:y

−8

⋅y

3

⋅x

0

⋅x

−2

Step-by-step explanation:

combine the powers of

y:

8

3

=

8

+

3

=

5

y

−8

⋅y

3

=y

−8+3

=y

−5

Simplify

0

x

0

:

Any number raised to the power of 0 is 1, so

0

=

1

x

0

=1.

Combine with

2

x

−2

:

1

2

=

2

1⋅x

−2

=x

−2

So, the expression simplifies to:

5

2

=

1

5

1

2

=

1

5

2

y

−5

⋅x

−2

=

y

5

1

x

2

1

=

y

5

x

2

1

Equivalent expressions:

1

5

2

y

5

x

2

1

2

5

x

−2

y

−5

Non-equivalent expressions:

11

2

y

−11

x

−2

 (incorrect, since powers of

y are not added correctly)

11

2

x

2

y

−11

 (incorrect, similar issue with powers)

5

2

y

−5

x

2

 (incorrect, as the power of

x should be negative)

2

5

y

−5

x

−2

 (incorrect due to incorrect placement of powers in the denominator)

So, the correct answers are:

5

2

y

−5

x

−2

1

5

2

y

5

x

2

1