Answer :
To find the electric force acting on a charge placed in an electric field, you can use the formula:
[tex]\[ F = qE \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( E \)[/tex] is the electric field strength.
Given:
- The charge, [tex]\( q = 4.5 \times 10^{-5} \, \text{C} \)[/tex]
- The electric field strength, [tex]\( E = 2.0 \times 10^4 \, \frac{\text{N}}{\text{C}} \)[/tex]
Step-by-step solution:
1. Identify the given values:
- [tex]\( q = 4.5 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( E = 2.0 \times 10^4 \, \frac{\text{N}}{\text{C}} \)[/tex]
2. Substitute the given values into the formula:
[tex]\[ F = (4.5 \times 10^{-5} \, \text{C}) \times (2.0 \times 10^4 \, \frac{\text{N}}{\text{C}}) \][/tex]
3. Perform the multiplication:
[tex]\[ F = 0.9 \, \text{N} \][/tex]
Thus, the electric force acting on the charge is [tex]\( 0.9 \, \text{N} \)[/tex].
[tex]\[ F = qE \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( E \)[/tex] is the electric field strength.
Given:
- The charge, [tex]\( q = 4.5 \times 10^{-5} \, \text{C} \)[/tex]
- The electric field strength, [tex]\( E = 2.0 \times 10^4 \, \frac{\text{N}}{\text{C}} \)[/tex]
Step-by-step solution:
1. Identify the given values:
- [tex]\( q = 4.5 \times 10^{-5} \, \text{C} \)[/tex]
- [tex]\( E = 2.0 \times 10^4 \, \frac{\text{N}}{\text{C}} \)[/tex]
2. Substitute the given values into the formula:
[tex]\[ F = (4.5 \times 10^{-5} \, \text{C}) \times (2.0 \times 10^4 \, \frac{\text{N}}{\text{C}}) \][/tex]
3. Perform the multiplication:
[tex]\[ F = 0.9 \, \text{N} \][/tex]
Thus, the electric force acting on the charge is [tex]\( 0.9 \, \text{N} \)[/tex].